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Abstract. The relationship of the Poynting vector and the dispersion surface in the absorbing
crystal is studied in detail. It is found that the long-accepted concept in which the physical
energy flow of waves in the absorbing crystal is normal to the real part of the dispersion surface
is not valid when the contribution of the imaginary part of the atomic scattering factor to the
diffraction is comparable to that of the real part.

1. Introduction

The dispersion surface is a useful concept in describing the propagation of the waves
in periodic structures. Ewald [1] and, more particularly, Kato [2] have pointed out that
the physical energy flow of waves in perfect crystals, which is described in terms of the
Poynting vector, is normal to the dispersion surface when there is no absorption. This
geometric picture is similar to that for the case of visible rays and their relevant normal
surface. Batterman and Cole [3] stated that the physical energy flow of waves in the
absorbing crystal is normal to the real part of the dispersion surface when|Fhr | � |Fhi |,
whereFhr andFhi are the contributions of the real and the imaginary parts of the atomic
scattering factor to the structure factorFh (h is an abbreviation for the Miller indices [hkl]).

With x-rays from a tunable synchrotron radiation source, it is possible to select the ratio
of Fhr and Fhi , and make|Fhr | 6 |Fhi |, or evenFhr = 0, near the absorption edge of a
component atom in the crystal [4–15]. In 1995, Fukamachiet al found that the shape of
the dispersion surface is strongly related to the ratio ofFhr andFhi [13].

In this paper, we intend to analyse the relationship of the direction of the Poynting
vector and the real part of the dispersion surface in the absorbing crystal, changing the ratio
of Fhr andFhi .

2. The dispersion surface and the Poynting vector

The Fourier coefficients of 4π times the complex polarizability of the crystal can be written
as

χh = χhr + iχhi (1)
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where

χhr = |χhr | exp(iαhr) = − 4πe2

V mω2
Fhr (2)

χhi = |χhi | exp(iαhi) = − 4πe2

V mω2
Fhi. (3)

In (2) and (3),V is the unit-cell volume,ω the x-ray frequency,m the electron mass ande
the electron charge. The phase difference is given by

δ = αhi − αhr . (4)

The product ofχh andχh̄ can be written as

χhχh̄ = |χ̄h|2(1 − b2 + i 2p cosδ) (5)

where

|χ̄h|2 = |χhr |2 + |χhi |2 (6)

b =
√

2|χhi |/|χ̄h| (7)

p = |χhr ||χhi |/|χ̄h|2. (8)

If we define the parameter

q = 1

1 + |χhr/χhi |2
thenb = √

2q, andp = √
q(q − 1).

In the two-beam approximation [3, 16, 17, 18, 19], the displacement field within the
crystal is a Bloch wave of the form

D = e−iωt (D0e−ik0·r + Dhe−ikh·r) (9)

wherekh = k0 + h (h is the reciprocal vector) and the amplitude satisfy the system of
equations

2(ξ0 − iκ0i )D0 − Pχh̄κ0rDh = 0

−Pχhκ0rD0 + 2(ξh − iκ0i )Dh = 0
(10)

with the resonance defectsξ0 andξh defined by

ξ0 = (k0 · k0)
1/2 − κ0r (11)

ξh = (kh · kh)
1/2 − κ0r (12)

whereκ0r = K(1 + 1
2χ0r ) and κ0i = Kχ0i , whereK is the incident vacuum wavevector

andP is the polarization factor. As the determinant of this system is zero,

(ξ0 − iκ0i )(ξh − iκ0i ) = κ2
0rP

2χhχh̄ (13)

gives the equation ofa dispersion surface in reciprocal space. This surface is a two-sheet
surface of revolution (a hyperbolic cylinder) about the axis OH, where O and H are nodes
of the reciprocal lattice; see figure 1.

With the tangential continuity boundary condition, the wavevectors in an absorbing
crystal can be written as

k0 = k0r + ik0iv (14)

kh = k0 + h = khr + ik0iv (15)
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Figure 1. A schematic diagram of the dispersion surface. The origin of the reciprocal lattice is
O, the diffracting point is H and the Laue point is L. AxisX is parallel to the crystal surface.

wherev is a unit vector normal to the entrance surface and points inward, as shown in
figure 1. Since|k0r | � |k0i | and |khr | � |k0i | (this assumption being correct even when
|Fhr | 6 |Fhi |), according to (11) and (13) we have

ξ0 = |k0r | − κ0r + ik0i cosθ1 (16)

ξh = |khr | − κ0r + ik0i cosθ2. (17)

It can be seen that the real parts ofξ0 andξh represent the distances between the tie points
in the dispersion surface and the Laue spheres centred at the points O and H with a radius
R = κ0r , their imaginary parts being proportional to the absorption coefficients along the
wavevectors.

In Batterman and Cole’s treatment (p 696 in [3]), they made two additional assumptions:
(1) |Fhr | � |Fhi |, and (2)(|khr | − κ0r )(|k0r | − κ0r ) � (khi cosθ2 − κ0i )(k0i cosθ1 − κ0i ).
Under these assumptions, the real part of the dispersion surface is of the same shape as
that when there is no absorption. In our treatment, we discard these assumptions, since the
contribution of the imaginary part of the atomic scattering factor to the diffraction can be
comparable to that of the real part near the absorption edge.

As shown in figure 1,X and the real part ofY represent the horizontal and vertical
distances between the Laue point and the tie point, the imaginary part ofY being proportional
to the absorption coefficients alongv. The relationship between(ξ0, ξh) and(X, Y ) can be
written as

ξ0 = X sinθ1 + Y cosθ1 (18)
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ξh = X sinθ2 + Y cosθ2 (19)

where

θ1 = π

2
− θ − β (20)

θ2 = π

2
+ θ − β. (21)

θ is the Bragg angle, andβ is the angle between the diffracting surface and the crystal
surface. Substituting (18) and (19) into (13), we have

X2 sinθ1 sinθ2 + Y 2 cosθ1 cosθ2 + XY sin 2β − 2iκ0i cosθ(X cosβ + Y sinβ) − κ2
0i

= κ2
0rP

2

4
χhχh̄. (22)

This is the dispersion equation in the rectangular coordinatesX andY . In the symmetrical
Laue case,β = π/2, equation (22) can be simplified as

Y 2 cos2 θ − X2 sin2 θ − 2iκ0iY cosθ − κ2
0i = κ2

0rP
2

4
χhχh̄. (23)

The angle formed by the normal to the real part of the dispersion surface (17) at point
(X, Y ) with the X-axis is determined by the condition

dX

dY1
= (κ0i − Y2 cosθ)2 + (Y1 cosθ)2

Y1X sinθ cosθ
cotanθ (24)

whereY1 andY2 are the real and the imaginary parts ofY , respectively.
The averaged Poynting vector〈S〉 corresponding to the point(X, Y ) can be given by

〈S〉 = c

8π
e4πki ·r

[
|D0|2 k0

|k0| + |Dh|2 kh

|kh|
]

. (25)

As shown in figure 2, the direction of the vector〈S〉 is determined by the angles1 and�.
It follows immediately from figure 2 that

sin(θ + 1)

sin(θ − 1)
= |D0|2

|Dh|2 . (26)

So we get

tan1 = |D0|2 − |Dh|2
|D0|2 + |Dh|2 tanθ. (27)

Therefore,

tan� = |D0|2 + |Dh|2
|D0|2 − |Dh|2 tanθ. (28)

According to (10) and (28), we get

tan� = {[√
(Y1 cosθ + X sinθ)2 + (Y2 cosθ − κ0i )2

+
√

(Y1 cosθ − X sinθ)2 + (Y2 cosθ − κ0i )2
]2/

[4Y1X sinθ cosθ ]
}

× cotanθ. (29)

According to (23), we get

Y1 cosθ = (±)
κ0r |χ̄h|

2
Re[X′2 + (1 − b2 + i 2p cosδ)]1/2 (30)

κ0i − Y2 cosθ = (±)
κ0r |χ̄h|

2
Im[X′2 + (1 − b2 + i 2p cosδ)]1/2 (31)
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Figure 2. The relationship of the Poynting vector and the dispersion surface in the symmetrical
Laue case when there is no absorption.

where the± correspond to the two tie points in the dispersion surface, andX′ is given by

X′ = 2 sinθ

κ0rP |χ̄h|X. (32)

Without loss of generality, it is enough to deal with one tie point. Equations (24) and (29)
can be written as

dX

dY1
= 4{[Im√

L]2 + [Re
√

L]2}
4X′ Re

√
L

cotanθ (33)

and

tan� =

[√
(Re

√
L + X′)2 + (Im

√
L)2 +

√
(Re

√
L − X′)2 + (Im

√
L)2

]2

4X′ Re
√

L
cotanθ (34)

where

L = X′2 + (1 − b2 + i 2p cosδ) (35)

Re
√

L =
[

1

2
(A + L1)

]1/2

(36)

Im
√

L =
[

1

2
(−A + L1)

]1/2

(37)

L1 = (A2 + B2)1/2 (38)

A = X′2 + 1 − b2 (39)

B = 2p cosδ. (40)

Using formulae (33) and (34), we can analyse the relationship between the direction of the
Poynting vector and the dispersion surface.
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Figure 3. The variation ofQ with respect toX′ for different values ofq: (1): q = 0; (2):
q = 0.1; (3): q = 0.3; (4): q = 0.4; (5): q = 0.5; (6): q = 0.6; (7): q = 0.7 (8): q = 0.9; (9):
q = 1.

3. Discussion and conclusion

3.1. No absorption

In this case,b = p = 0, Re
√

L = √
X′2 + 1 > |X′|, Im

√
L = 0,∣∣∣∣ dX

dY1

∣∣∣∣ =
√

X′2 + 1

|X′| cotanθ = |tan�| (41)

and the Poynting vector is perpendicular to the dispersion surface, which is consistent with
the results of Kato and Ewald [1, 2].

3.2. With absorption

3.2.1. The case whereq ≈ 0 (|χhi | � |χhr |). This situation is usually regarded as taking
place only when the energy of the incident x-ray is far from the absorption edge. However,
Fukamachiet al found that it may take place when the energy of the incident x-ray is about
7 eV below the Ga K-absorption edge for the GaAs (200) quasi-forbidden reflection, and
observed the phase change of the x-ray polarizability [9]. In this case, the parameters in
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Figure 3. (Continued)

(24) and (25) are the same as those in the case of no absorption. The Poynting vector is
perpendicular to the real part of the dispersion surface, which is consistent with the result
of Batterman and Cole [3].

3.2.2. The case where0 < q < 1 (χhrχhi 6= 0). According to (33) and (34), whenX′ = 0
(at the exact Bragg angle),|dX/dY1| = |tan�| = ∞, the energy flows along the diffracting
lattice. WhenX′ 6= 0, since the imaginary part ofL is not zero, Re

√
L 6= 0, it is enough

to compare the value ofQ with 1, whereQ is given by

Q = |dX/dY1|
|tan�| = 4{[Im√

L]2 + [Re
√

L]2}[√
(Re

√
L + X′)2 + (Im

√
L)2 +

√
(Re

√
L − X′)2 + (Im

√
L)2

]2 .

(42)

As shown in figure 3,Q is calculated for different values ofq. It can be seen that when
0 < q < 1, in the region whereX′ 6= 0, the value ofQ is smaller than 1, which means that
the Poynting vector gradually deviates from the normal of the real part of the dispersion
surface. The deviation increases with increasingq. For a givenq, the deviation is the
largest when|X′| = 1. When|X′| → ∞, Q → 1, the deviation vanishes.
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Figure 4. The complex dispersion surface when diffraction is induced only by the imaginary
part of the atomic scattering factor.Y ′ = [2 sinθ/(κ0r |χ̄h|)]Y . The Poynting vector is nearly
tangential to the real part of the surface whenX′ = ±1.

3.2.3. The case whereq = 1 (χhr = 0). In this case, the diffraction is induced only by the
imaginary part of the atomic scattering factor [8, 10, 12, 14, 15] and the dispersion surface
in the symmetrical Laue case is similar to that in the symmetrical Bragg case with no
absorption [14]. According to (35),L = X′2 − 1, so in the region of|X′| < 1, Re

√
L = 0,

|dX/dY1| = |tan�| = ∞, the energy flows along the diffracting lattice. When|X′| ≈ 1,
the Poynting vector is nearly tangential to the real part of the dispersion surface, as shown
in figure 4. In the region where|X′| > 1, Q 6= 1 (see figure 3(b)), the Poynting vector
deviates from the normal of the real part of the dispersion surface.

Because of the anomalous absorption and penetration, the direction of the Poynting
vector of the total fields in the crystal does not change with the distance from the crystal
surface; it only changes when the two fields flow in the same direction. According to the
above analysis and formulae (33) and (34), it can be seen that this condition is satisfied only
at the exact Bragg angle ifq 6= 1, which makes the energy flow very difficult to observe
[20]. However, ifq = 1, the two fields flow along the diffracting lattice in the region where
|X′| < 1, which corresponds to a small-angle range deviating from the exact Bragg angle.
This may be helpful in the experimental observation of the energy flow for an absorbing
crystal.
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